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Summary 

The finite element method is used to compute surface stresses for a 
craze in high impact polystyrene (HIPS) and the results are compared 

with those obtained using a distributed dislocation stress analysis. 
There is very good agreement between the stress profiles for the 

major portion of the craze length. The estimates differ in the craze 

tip region where calculated stresses are very sensitive to small 

changes in the displacement profile. 

Introduction 

A transmission electron microscopy technique (LAUTERWASSER and 

KRAMER 1979) has recently (DONALD and KRAMER 1982) been used to measure 

craze surface displacements in HIPS. Thin films of the polymer are 
bonded to a copper grid which is then strained until crazes nucleate 

at rubber particles. A distributed dislocation stress analysis (WANG 

and KRAMER 1982) is applied to the displacement profile in order to 

compute both the craze surface stress profile and the applied stress. 

The finite element method, which has been used to compute craze surface 

displacements and stresses (BEVAN 1981, 1982),is utilised to determine 

the stress profile which is then compared with that obtained by the 

distributed dislocation analysis. 

Theoretical 

The distributed dislocation method (BILBY and ESHELBY 1972) has been 

applied (WANG and KRAMER 1982) to plastic zones at crack tips. The 

analysis is applicable to narrow wedge-shaped zones such as those 
considered in the Dugdale model (DUGDALE 1960). It has been observed 
(BROWN and WARD 1973) that crazes in glassy polymers have this shape. 

The dislocation density ~(x) is, with unit Burgers vector, given by 

~(x) = -2 dv(x) (i) 
dx 

where v is the displacement of the surface of the plastic zone. 
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The requirement of no stress singularity at the crack tip governs the 
surface stress profile and enables the applied stress, @~ , to be 
calculated. The surface stress is 

S(x) = E*x(x 2 - c2) �89 
a dx I ~(x,) 1 

(2) 
2~ J �89 

c (x~ - c') (x ~ - x~) 

where E* = 
E plane stress 

E/(I- V 2) plane strain 

In the above equation, E is Young's Modulus, v is Poisson's ratio, 

c is the half length of the crack and a is the total half crack plus 

craze length. 

The applied stress equation is 

E* a 1 
O = f dx ~ (x) �89 (3) 

2~ J (x a - c 2 ) 
c 

The method is not restricted to dislocation arrays since the surface 

stress profile required to maintain a given surface displacement profile 

will be determined by the elastic response of the surrounding matrix. 

The plastic zone can therefore be represented by an equivalent 

continuous array of dislocations which produces the same displacements. 

Computation and Discussion. 

The rubber particle is treated as a crack, of half length equal to 

the radius of the particle, when the dislocation density method is 
used in this application. In the plane stress finite element analysis 

the particle is modelled as a low modulus circular inclusion. Three 

dimensional analysis would require that the particle be represented 

by a sphere. However, three dimensional finite elements are expensive 

in computer time and a previous study (BEVAN 1981) has shown that two 
dimensional analysis is adequate for crazes. The stress concentration 

factor for a cylinder differs from that of a sphere but the difference 

in computed stresses for a measured displacement profile should be 

small except, possibly, for the vicinity of the particle tip. the 

finite element idealization of the region including the particle and 

the craze is shown in Figure i. The remainder of the mesh is similar 

to that published recently (BEVAN 1982). 

The applied stress, calculated using equation (3), and the 
experimental values of craze surface displacements are included in 

the finite element program input. The output gives the corresponding 
craze surface stress profile. It is found that almost identical 

stresses are obtained if the particle is treated as a circular void. 
Craze surface stress profiles are plotted in Figure 2 and it is seen 

that there is excellent agreement for most of the craze length 
between the finite element profile and that calculated by DONALD and 
KRAMER (1982) using equation (2). The modelling of the rubber 
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Fiqure i. Portion of finite element mesh including 

rubber particle and the craze. 
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Figure 2. Comparison of dislocation density stress 
analysis and finite element method estimates of the 
craze surface stress profile. 

particle as a crack therefore does not produce any appreciable error 

in the calculated stresses. This does not imply that the crack would 
produce the same tip displacements as the particle but it shows that 
the analysis may be used when the measured displacements have not been 

produced by a crack. 



190 

There is a marked difference in the two profiles as the craze 

tip is approached. It is kno~ (ALLISON 1979) that finite element 

estimates of stress concentration factors are lower than experimental 

ones but the discrepancy in tip stresses is in this case due mainly 
to differences in craze tip displacement profiles. It is seen from 

equation (2) that the computed stress normal to the interface at any 

point is very sensitive to displacement derivatives in the inm~ediate 
vicinity of the point. Thus the calculated surface stress at the craze 

tip is dependent on the precision of measurements of craze opening 

displacement s near the tip. Displacement measurements are made up 
to about 0.25 ~m from the craze tip. This resolution is very good for 

typical crazes and deformation zones with lengths in the region of 
i00 ~m but for HIPS crazes it is necessary to assume the shape of the 

displacement profile in the last 5% or so of the craze length. The 
difference in craze tip stress profiles shown in Figure 2 reflects 

differences in the assumed shape of the displacement profiles for this 

region. If the same displacement profile is used in both 

computations, the stress profiles are much closer but the estimated 

stress concentration factor at the craze tip is at best an approximation. 

Tip stresses can be computed more accurately for longer crazes where 

finite element estimates of the stress concentration factor are in 

reasonable agreement with, although lower than, those obtained by the 

dislocation density method. 

The present study has concentrated on the calculation of S(x) and 
not the applied stress, o~ �9 The latter can readily be computed using 

the dislocation density stress analysis but this analysis does not take 

into account the lateral constraint imposed by the copper grid on the 

polymer film. An accurate estimate of the applied stress could be 

facilitated by measuring the displacements at the boundary of the grid 

and the film. The displacements and the boundary conditions of the 
experiment would then be included in the finite element program. The 

effect of lateral constraint is at present being considered and 
preliminary results suggest that the applied stress for craze nucleation 

and growth in HIPS is about 14% greater than that calculated assuming 

that the boundary displacements are produced by uniaxial tension. 
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